Summarization
In text summarization, given a piece of text (paragraph or document), the goal is to produce a much shorter summary.
Mean win rate
CNN/DailyMail - ROUGE-2
XSUM - ROUGE-2
Mean win rate
CNN/DailyMail - SummaC
CNN/DailyMail - QAFactEval
CNN/DailyMail - BERTScore (F1)
CNN/DailyMail - Coverage
CNN/DailyMail - Density
CNN/DailyMail - Compression
CNN/DailyMail - HumanEval-faithfulness
CNN/DailyMail - HumanEval-relevance
CNN/DailyMail - HumanEval-coherence
XSUM - SummaC
XSUM - QAFactEval
XSUM - BERTScore (F1)
XSUM - Coverage
XSUM - Density
XSUM - Compression
XSUM - HumanEval-faithfulness
XSUM - HumanEval-relevance
XSUM - HumanEval-coherence
Mean win rate
CNN/DailyMail - Stereotypes (race)
CNN/DailyMail - Stereotypes (gender)
CNN/DailyMail - Representation (race)
CNN/DailyMail - Representation (gender)
XSUM - Stereotypes (race)
XSUM - Stereotypes (gender)
XSUM - Representation (race)
XSUM - Representation (gender)
Mean win rate
CNN/DailyMail - Toxic fraction
XSUM - Toxic fraction
Mean win rate
CNN/DailyMail - Denoised inference time (s)
XSUM - Denoised inference time (s)
Mean win rate
CNN/DailyMail - # eval
CNN/DailyMail - # train
CNN/DailyMail - truncated
CNN/DailyMail - # prompt tokens
CNN/DailyMail - # output tokens
CNN/DailyMail - # trials
XSUM - # eval
XSUM - # train
XSUM - truncated
XSUM - # prompt tokens
XSUM - # output tokens
XSUM - # trials